If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+615x-68625=0
a = 1; b = 615; c = -68625;
Δ = b2-4ac
Δ = 6152-4·1·(-68625)
Δ = 652725
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{652725}=\sqrt{225*2901}=\sqrt{225}*\sqrt{2901}=15\sqrt{2901}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(615)-15\sqrt{2901}}{2*1}=\frac{-615-15\sqrt{2901}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(615)+15\sqrt{2901}}{2*1}=\frac{-615+15\sqrt{2901}}{2} $
| -(3b-8)=7-3b | | 3-5y=19 | | 2(y−4)=4 | | 3x+8=12/2x | | 3(x+4)-2(x+3)+6x=41 | | 2(2x+3)+5x+1=-11 | | 3x+8=12÷2x | | y/12=7/12 | | 32x+8=180 | | 8(n-7(=-8 | | 8-(1/3(x))=16 | | 68+2x=x | | 50-25x=-275 | | 2n+3=3-n/4 | | 2(6x+5)=2x+3 | | 2(z-0)=-4 | | 3x+4x-8x-12=3x+8+14x | | x+37+67=180 | | 15/2.25=x | | 24=2(3)+2y | | -6(z-4)+10z=16 | | 50xY=70 | | 2/3=1/8b | | 2.5t=0 | | 10y−2y=8 | | 10x+1=-1.1-(-5x+7) | | 5−3r=-2r | | 30y-5y-8,y=3 | | -9+7d=8d | | 7(x+5)=119 | | 30y-5y-8,y=8 | | 7u/4=-42 |